
Thermal and Mechanical Challenges 

for Test Handlers

Ernest Blanco & Jerry Tustaniwskyj

Cohu, Inc

Mesa, Arizona ● March 5-8, 2023



Content

• Industry direction 

• Different device types

• Device test flow

• Device tests

• Parallelism 

Thermal and Mechanical Challenges for Test Handlers 2

• Device handling

• Temperature control

• Vision system

• MEMS



Industry Direction

• 2 trends:

– Devices shrinking 

• Integrated into more / new 

applications

– Devices size increasing

• Greater power levels
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Different Device Types (Smaller devices) 

• Typical types: Over-molded & lidded
– QFN, QFP & BGA

• Challenges:
– Plastic over-mold thermally insulates die 

• Inverted thermal resistance (lower Rjb vs Rjc) 

– Shrinking devices < 2 mm x 2 mm 

• Pick & place vs thermal fighting for limited area

• Mechanical alignments 

• Smooth handling a must!

– Fragile leads on some devices (QFP shown)

Thermal and Mechanical Challenges for Test Handlers 4



Different Device Types (Large devices) 

• Typical types: Lidded & Bare die 
– BGA, LGA

• Challenges:
– Bare die cracking from hard contact

– Deep socket designs  

• Both (above) require interposer hurting thermal 

performance

– Temp feedback sensor far from high power die 

zones

– Marring / residue on die or lid
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Different Device Types (Larger devices) 

• Typical types: Multi chip modules

– BGA, LGA

• Challenges:

– Devices > 100 mm x 100 mm

• Size & weight exceeding handler’s capabilities

– Power dissipation >1000 W

– Die stacking increases thermal resistance

– Higher insertion forces driving thick stiffeners 

• Hide the die require interposer

– Planarity between die affecting thermal contact
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Device Test Flow

• Wafer: Test ICs on the Si

• Functional: Test device 

performance

• Burn in: Test for infant mortality

• System level: Test device in real 

world use context
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Device Tests (Temperature Effects)

• Higher temperature results in lower reliability

» Ea is the activation energy (from reference table)

» k is Boltzmann’s constant (8.617x10-5 eV/K)

» Tuse is the DUT junction temperature at application use

» Ttest is the DUT junction temperature in test

– Failure rate typically doubles every 15°C

• Circuits typically slow down with temperature

• Leakage current increases with temperature

⇒ More power dissipation

𝐴𝐴𝑇𝑇 = 𝑒𝑒𝐸𝐸𝑎𝑎𝑘𝑘 1𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢 − 1𝑇𝑇𝑡𝑡𝑢𝑢𝑢𝑢𝑡𝑡 Arrhenius equation
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Device Tests (Voltage Acceleration)

• Voltage acceleration is given by:

• Where: 
Vu and Vtest are use and test (stress) voltages, in volts

β is the voltage acceleration term (4 per volt is typical)

• Goal is to maximize Vtest without damaging the DUT

• Leakage current increases with voltage

⇒ More power dissipation

𝐴𝐴𝑉𝑉 = 𝑒𝑒𝛽𝛽 𝑉𝑉𝑡𝑡𝑢𝑢𝑢𝑢𝑡𝑡 − 𝑉𝑉𝑢𝑢



10

Device Tests (Leakage Current Effects)

• Test stresses DUTs with voltage and 

temperature

– Voltage and/or temperature increase will 

increase leakage current

– ⇒ More power dissipation

𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘 = 𝜇𝜇0𝐶𝐶𝑂𝑂𝑂𝑂𝑊𝑊𝐿𝐿 𝑒𝑒𝑏𝑏 𝑉𝑉𝑑𝑑𝑑𝑑−𝑉𝑉𝑑𝑑𝑑𝑑𝑑 𝑉𝑉𝑇𝑇2 1− 𝑒𝑒−𝑉𝑉𝑑𝑑𝑑𝑑𝑉𝑉𝑇𝑇 𝑒𝑒− 𝑉𝑉𝑡𝑡𝑡 −𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑉𝑉𝑇𝑇



Parallelism (in Test)
• Test time expensive on test floor

– Target less test time per device 

• Maximize UPH (Units Per Hour)

• Push to run programs in parallel for test

– ⇒ increases device power
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Parallelism (Mechanical)

• ⇒ x64 and possibly higher

– Maximize UPH (Units Per Hour)

• Power supply and cooling 

magnitude impractical

• Handler doesn’t grow proportionally

– Pitch is reduced

• Scaling of mechanism complexity

• Higher socket insertion force 
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Device Handling (Forces)

• Devices are not flat

• Devices can be bent with 

uneven loading

• Uniform applied force key to 

proper insertion

– Socket and die force
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Device Handling (Gimbaling and Compliance)

• Accurately controlling 

device’s 6 DOF is critical

– Each device requires 

independent control

• Gimbal to make device co-

planar & aligned with socket

• Compliance to account for 

tolerance stack up 
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Thermal Head

Test socket

Devices



Device Handling (Thermal Considerations)

• Thermal expansion mis-

aligns components 

• Multiple test temperatures

– Re-alignment not practical

• Proper soak temps critical to 

test time

– Direct effect on UPH
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Device Handling (IO Alignments)
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• Device transfer customer tray to 

handler

• Sub assembly tolerances must 

combine to small values

– Tolerance stack up

• High speed moves > 1m distances

• Accelerations > 2 g’s 
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Device Handling (Contactor Alignment)
• 0.4mm pitch common

– Tighter pitch coming

• Tolerances:

– Device to edge tolerance

– Other package tolerance

– Thermal expansion
• Cu lead frame 17 ppm/℃
• Molding compound 10 – 25 ppm/ ℃
• 100℃ temperature change

– 25 mm x 25 mm package, 17 ppm/ ℃
–  0.04mm expansion  (non-correctable)

– Socket/contactor expansion must be considered
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Temperature Control (Control Mode)

• Ideal test controls junction temp (Tj)

• Control system only as good as it’s 

feedback 

– Tj feedback: DTF 

– Device power feedback: PF 

– No internal device feedback: ETF & HTF
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ETFETF



Temperature Control (Thermal Resistance)

• 2 knobs for increased power 

dissipation

– Lower thermal resistances

• Interfaces

• Device construction

– Lower coolant temperature

• Hot test best for power dissipation
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Temperature Control (Cooling Mediums)

• Many options with different pros and 

cons

– Customer preference/capabilities vary

– Options: Air, water, HFE, LN2 & refrigerant

• Changing cooling mediums impractical 

in the field

– Leads to over-engineered solutions
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Vision System (Process Control)

• Out of pocket detection

– Prevent damaging parts during pick and place

• Damaged devices

• Dropped devices

• Stuck devices

• etc.
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Device out of pocket
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Vision System (Quality Control)

• Look for device defects
– Compare incoming to outgoing devices (handler 

induced?)

• Inspect chuck
– Examine surface contacting device for contamination

• Heater on thermal chuck

• Pedestal (part of heater)
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Vision Systems (Alignment)

• Tool calibration reduces 

~75% of alignment errors

• In situ alignment eliminates 

~99% of errors

• Based on device IO matrix 

(solder balls, etc) corrections 

in X, Y, and θ
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Vision System (Bottom Side Defects)

• BGA:

– Damaged balls

– Missing balls

– Extra balls

– Solder debris
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PGA – bent pin LGA - contamination

QFP – bent lead QFN – damaged pad
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Vision System (Tray Level)

• Tray level line scans:

– Empty pocket detection

– 2DID for sort/binning

– Part orientation using pin 1
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Line scan camera

Light dome

Tray with parts
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Microelectromechanical Systems (MEMS)

• Testing requires physical stimulus 

• Cost of test up to 50% of device cost

• Market drivers:

– Lower cost over time

– Higher functionality (i.e., complexity) over 

time

• Stimulus mechanism temperature range 

(-55℃ to 160℃)
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MEMS (Optical Sensors)
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• Geometric accuracy

– Positioning accuracy

– Precision mirrors

• Intensity control

• Light source needs to be 

thermally isolated from 

temperature conditioned 

device
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MEMS (Hall Sensors)
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• Measurement of magnetic flux 

density

• Moving a device into magnetic 

field of a coil

– Change magnetic field intensity

• Moving a device into magnetic 

field of a permanent magnet

– Change orientation of magnetic 

field (rotate magnet)
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MEMS (GMR)

Thermal and Mechanical Challenges for Test Handlers
3/2013

• GMR – giant 

magnetoresistance

• Resistance dependent on 

magnetic field

• For test

– Change of the magnetic field in 

the contactor

– Measurement of magnetic field 

intensity



30

MEMS (Pressure Transducers)
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• From millibars (absolute) to 10 bar

– Vacuum/pressure in single test

• Multiple pressure levels

– Minimum stabilization time

• Live or dead bug access

• Seal to device

• Minimal air consumption

• High accuracy to set point

• Temperature/humidity control

• Low noise

• Radio RFX transmission (tire sensor)

Tire 

Sensor
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MEMS (Acoustic Sensors)
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• Frequency response

– 50Hz. to 20kHz.

– 100Hz.  3.4m wavelength 

• Sound pressure level

• Sensitivity

• Distortion

• Signal to noise ratio

• Isolation from ambient noise (handler!)

• Live and dead bug configurations

acoustic 

chamber
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MEMS (Acoustic Sensors)
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• Stimulus uniformity over parallel test sites
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MEMS (Low g/gyro)
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3/2013

• Static test

– Measure low g by aligning to gravity

– Can measure multiple axes

– Any strain exerted on device can affect output!

• Dynamic test

– Values of g > 1

– Gyro performance

• Connectivity to devices complex

• BIST available but requires more device area 

(higher cost)

– Tradeoff: cost of test vs. extra area
https://www.siliconsensing.com/technology/mems-accelerometers/
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MEMS (Low g/gyro – Static Test)

Thermal and Mechanical Challenges for Test Handlers
3/2013



35

MEMS  (Multifunction)

Thermal and Mechanical Challenges for Test Handlers
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• Inertial measurement units (IMUs)

– Tri-axis, digital accelerometer

– Tri-axis, digital gyroscope

– Tri-axis, digital magnetometer

– Digital pressure sensor
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MEMS (Viscosity Sensor)

Thermal and Mechanical Challenges for Test Handlers
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• Bio-sensor, measures blood viscosity

• Not practical to test with fluids!



Conclusion

• Devices will continue to get more 

difficult to test

• Must continue to innovate and 

keep up with technology 

• Must avoid being the bottleneck 

to progress!!
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