Nov. 2022

The challenges in testing small and highly integrated devices in a massive parallel test system

Markus Wagner ISG Manager Engineering

- Trends and objectives for high parallel testing
- □ The challenges of testing IC's in a massive parallel test system
- Concepts and solution for high parallel test contactor and results
- □ Thermal aspects
- Conclusion & follow-on work?

Trends and Objective of IC Handling

Backend Test Evolution

October 20, 2022 Page 4

Singulated Handlers vs. Strip-Based Handlers

The challenges of testing IC's in a massive parallel test system

Requirement and Challenges

"Contactor / and Probe card architecture should evolve to simplify the interface, however just the opposite is happening — more complexity is built into the contactor and probe card interfaces"

- Very precise contacting technology in X, Y and Z
- Pad and bumps may get damaged during the contacting process
- Very thin and fragile package require accurate pick and place as well as force-controlled contacting

Diversification in Geometry of Device and Pads

- Standardization is difficult
- Technical clarification becomes challenging
- Reducing cost is a constant goal
 - Reliability
 - Throughput Tester capability, Handler thruput & Parallelism need to get balanced
- Time to market
 - Shorter life cycle

October 20, 2022 Page 7

Requirement and Challenges

Temperature management

- Homogeneous temperature over the entire contactor array
- Power applications need to dissipate Temperature to sustain the set-temperature
- Temperature ranges are expanding Automotive, military, Aerospace...
- Immediate heat control

Sensor & Stimuli

• MEMS application require a variety of testing environments such as pressure, magnetic, acceleration....

Reliability Electrically and mechanically

- Manufacturing capabilities progressed which is raising the electrical and mechanical requirements of a test socket
- High power / voltage /current tighter pitch smaller formfactors (multi physics problems)

Track and trace functionality

- Collecting data's
- Data analytics
- Maintenance

Thermal simulation

LGA 2 X 2

Concept / Solution for high parallel test contactor

Integration on an Example of a MEMS Test

Example describes a project:

- Implementation of generic methods and technology
- Applicable for further multi site testing projects

Batch Carrier Vacuum

October 20, 2022 Page 10

Concept for a high parallelism contactor - Facts

Single module

Active retracting

October 20, 2022 Page 11

Miniaturization - Reliability

Simulation and Test

- Simulation of holding force on the "Accuchuck" Batchcarrier
- Measurement of holding force
- Development of an "Active Retracting" concept Patented
- Close corporation with all involved stake holders
 - Best solution /optimized solution

Force measurement plot

Force measurements

Note: The first run of ID 02.000080 is the fully populated AccuChuck of the report 20210531-1.

Tolerance analysis and optimization

□ Target : +/-40 µm positioning accuracy over all 1176 I/O's)

- Reduced tolerance chain → only 4 dimensions from the contact tip to the positioning feature from the contactor
- Appropriate material selection (Manufacturability/ Thermal expansion/ cost...)
- Spring pin selection with an optimized tolerance of +/-o,oo35mm in diameter (Kita Cohu Pin)
- Hand in hand collaboration between handler team and Contactor team
- Closed Loop tolerance analysis und mechanical simulation → 99.925% within +/-40 µm cpk 1.12 (3.3Sigma)

Component	Distribution function	Tolerance type	Description	Material of this component	Algebraic sign	Nominal dimension (mm)	±Tolerance	Angle dependence	Linear expan- sion coeffi- cient (1/'C)	Statistical o _i (mm)	Con dev
M1	Parabolic							yes	0	0,003812671	
	Trapezoidal (1/2:1)	Female	Pogo bohrloch		+	0,14	0,007		0	0,003195048	
	Normal	Male	Pogo Diameter		-	0,1265	0,0035		0	0,001166667	
M2	Trapezoidal (1/2:1)		Distance Pogohole to Base B X		+	6,2	0,01	no	0	0,004564355	
		not relevant							0		
		not relevant							0		
M3	Trapezoidal (1/2:1)		Distance Base B (x) to Nose		+	0	0,01	no	0	0,004564355	
		not relevant							0		
		not relevant							0		
M4	Parabolic							no	0	0,007994138	
	Trapezoidal (1/2:1)	Female	Nose Longhole		+	0,61	0,005		0	0,002282177	
	Trapezoidal (1/2:1)	Male	Nose with		-	0,59	0,01		0	0,004564355	
M5	Trapezoidal (1/2:1)		Distance Precision Bolt to Nose Longhole			16	0,01	no	0	0,004564355	10000
		not relevant							0		
		not relevant							0		
M6	Normal				+	9,8	0	no	0	0	
		not relevant			L				0		
		not relevant							0		
									0	r i	

Results - Measurement

What was achieved?

- Positioning accuracy: +/-20 μm
- active contacting contacting feature
 - Force controlled contacting
 - Active release of device from contact element
- Lifetime test >> 1.5M of active retracting feature

Imprint measurement

October 20, 2022 Page 14

Mechanical Integration – Simulation

Highly integrated

- One stop shop
 - Board, stiffener, contactor, reference sensors "Track & Trace" functionality and alignment concept with "AccuChuck"
 - Simulation (mechanical, tolerances, temperature)
 - Overall positioning accuracy over the entire contactor
 +/-60 µm (including "AccuChuck")
 - Maximum z-deflection on board <40 µm over the entire test array

Mechanical robustness

Mech. Stress on board

Service Terminal Overview

Thermal aspects

Thermal aspects at high parallelism

Temperature management

- Homogeneous temperature over the entire contactor array
- Temperature ranges are expanding Automotive, military, Aerospace... -60°C – 175°C
- Power applications need to dissipate Temperature to sustain the set-temperature
- Immediate heat control

Conclusion and follow-on work

Conclusion

- Miniaturization, cost reduction, time to market, reliability, MEMS integration were successfully addressed by this project:
 - Higher Test Yield by tuned plunger and contactor System FEM Simulation assure mechanical robustness by appropriate material selection
 - > Best handler touchdown efficiency by matched contact site parallelism
 - Cohu project management of all key deliverables
 - > Coordination of activities with key supplier which simplifies customer experience and reduces risk
- Follow-on work Can the effort be justified by only one application?
 - Recipe creation and active thermal control Thermal aspects
 - > Faster technical clarification by using standardized mechanical /electrical interfaces

