# Production Wafer Probe of 77-81 GHz Automotive Radar Applications

Jason Mroczkowski (Cohu) Marty Cavegn (Cohu) Jory Twitchell (NXP)



Virtual Event • May 3 - 7, 2021





#### Outline

- Introduction
  - Automotive Radar device and testing trend
- Benefits and challenges in testing the new generation of devices
- Testing requirements and options
  - Pogo with PCB Stealth (patent pending)
  - xWave with Stealth (patent pending)
    - Advantages
    - Modification to the standard xWave
- Test results
  - Initial and current
- Improvements along the way
- Next and ongoing steps
- Summary/Conclusion



# Introduction

- Automotive Radar has been used since 2007
  - First generation (Approximately 2007 2013)
    - 28 GHz
    - Short range
    - Limited functionality
  - Second generation (Approximately 2014 2018)
    - 80 GHz improved resolution
    - Longer range
    - Increased functionality

#### • Now entering a third generation (2019-TBD)

- 80 GHz
- Longest range
- Increased performance and functionality
- Lower cost
- New testing challenges





# **Challenges with the Second Generation**

- Second generation (Presented by Brian Nakai at BiTS 2017)
  - Devices packaged in traditional formats (i.e. BGA, QFN, etc.)
  - Multiple packages for receiver (RX), transmitter (TX) and voltage controller (VCO)
  - Packages combined into module
  - Testing required at multiple levels (wafer, film frame, package, transceiver module)
    - About 15 tests, many of them repetitive
  - mmWave Automated Test Equipment (ATE)
    - Expensive new
    - Difficult to get repeatable results due to sensitivity
    - Extensive set-up due to calibration
    - Basically, need an RF Lab on your test floor with RF engineers to keep it going!







# **Benefits in Testing the New Generation**

#### Third generation

- Die level integration of receiver (RX), transmitter (TX) and voltage controller (VCO)
- Packages no longer required
- Testing required at wafer with fine pitch without RF and redistributed wafer test at speed WLCSP
  - Ambient, hot, cold, fewer total tests and less repetition (4 total)

#### Built-in Self Test (BIST)

- BIST allows die to do internal testing
- Eliminates need for expensive mmWave test equipment
- Better fit with standard wafer test environment
- Multi-site testing
  - Higher throughput





# **Challenges in Testing the New Generation**

#### • Built-in Self Test (BIST)

- Requires the I/O for the high frequency signals to be properly terminated while still providing a path for sourcing a DC voltage to the DUT.
- New functionality in the test hardware/probehead
- Dual frequency ranges to optimize with differing absorption requirements

#### Wafer/WLCSP testing

- Smaller target
- More sensitive to coplanarity
- Temperature sensitivity

#### Integration of the three devices into one die

More complex test program







202

# Challenges in Testing the New Generation (cont.)

#### Multi Site Testing

- Coplanarity challenges
  - Reduction of forces
  - Adding support for PCB (Bridge Beam)
- Site to site alignment
- Site to site variation
- CTE
- Contact Technology Dual
  - Spring Probes for standard signals
  - Leadframe for RF frequency signals
- Production Worthy Solution





#### **Test Solutions – Absorber on PCB**



Initially considered Solution

 Pogo Pins with Trace to termination on PCB (SMT resistor or absorber)

 90° transition at PCB creates significant signal reflection before termination



Production Wafer Probe of 77-81 GHz Automotive Radar Applications

202

### Test Solutions – Prototype Build Leadframe with PCB Connection



#### **Issues Solved**

- Straight leadframe with shallow angle connection to PCB reduces reflections
- Absorber attenuates signal

#### **New Issues**

- Tolerances of absorber create mechanical bowing issues
- Initial leadframe mechanics require larger than planned overdrive



202

# Test Solutions – Prototype Build Leadframe with PCB Connection – Multi-site



- Multi-site required some new thinking with leadframes fanning out at 45° from three sides
- Quad-site Diagonal skipped
  die
- Angled 25mm leadframes



# **Challenges in Prototype Build**

#### • Bowing of probehead

- Additional mounting locations required
- Reduction of force applied by absorbers more compliant second layer
- Redesign of components to add rigidity
- Coplanarity of PCB
  - Stiffener in original design
  - Added adjustable support beam to coplanarize
- Logistics across engineering and production sites
  - Probe Card Stiffener compatibility
  - Good yield and contact in original engineering site
  - Inconsistencies once installed in production site







#### Field Results - Initial Production with Prototype Build

|                      |        | Ambient     |        |             |        |             |        |             |     |   |          | НОТ         |        |             |        |             |        |             |     |  |        | COLD        |        |             |          |             |        |                    |     |  |
|----------------------|--------|-------------|--------|-------------|--------|-------------|--------|-------------|-----|---|----------|-------------|--------|-------------|--------|-------------|--------|-------------|-----|--|--------|-------------|--------|-------------|----------|-------------|--------|--------------------|-----|--|
|                      | 1 POGO | 1 LEADFARME | 2 POGO | ∼ LEADFARME | M POGO | ↔ LEADFARME | 4 POGO | 4 LEADFARME |     |   | 1 POGO   | 1 LEADFARME | 2 POGO | 2 LEADFARME | 3 POGO | ∽ LEADFARME | 4 POGO | 4 LEADFARME |     |  | 1 POGO | 1 LEADFARME | 2 POGO | ∼ LEADFARME | з родо   | ↔ LEADFARME | 4 POGO | 4 LEADFARME        |     |  |
|                      |        |             |        |             |        |             |        |             | 11  |   |          |             |        |             |        |             |        |             | 11  |  |        |             |        | L           |          | L           |        |                    | 11  |  |
|                      |        |             |        |             |        |             |        |             | 10  | ] |          |             |        |             |        |             |        |             | 10  |  |        | L           |        |             |          |             |        | L                  | 10  |  |
|                      |        | L           |        |             |        |             |        | L           | 9   |   |          |             |        |             |        |             |        |             | 9   |  |        |             |        |             |          |             |        |                    | 9   |  |
|                      |        |             |        | L           |        | L           |        |             | 8   |   |          |             |        |             |        |             |        |             | 8   |  |        |             |        | F           |          |             |        |                    | 8   |  |
|                      |        |             |        |             |        |             |        |             | 7   |   |          |             |        |             |        |             |        |             | 7   |  |        | F           |        |             |          | F           |        | F                  | 7   |  |
|                      |        |             |        |             |        |             |        |             | 6   |   |          |             |        |             |        |             |        |             | 6   |  |        |             | L      |             |          |             |        |                    | 6   |  |
|                      |        |             |        | F           |        |             |        | F           | 5   |   |          |             |        |             |        |             |        | L           | 5   |  |        |             |        |             | L        |             |        |                    | 5   |  |
|                      |        | F           |        |             |        | F           |        |             | 4   |   |          |             |        |             |        |             |        |             | 4   |  | L      |             |        |             |          |             | L      |                    | 4   |  |
| Lead frame's probing | L      |             | L      |             | L      |             | L      |             | 3   | 4 |          | L           |        | L           |        | L           |        |             | 3   |  |        |             |        |             |          |             |        |                    | 3   |  |
| window               |        |             |        | <u> </u>    |        |             |        |             | 2   | - |          |             |        |             |        |             |        |             | 2   |  |        |             | F      |             | F        | <u> </u>    | F      |                    | 2   |  |
|                      |        |             |        |             |        |             |        |             | 1   | - |          |             |        |             |        |             |        |             | 1   |  | F      |             |        |             | <u> </u> |             |        |                    | 1   |  |
|                      |        |             | F      |             | F      |             | F      |             | 0   | - |          |             |        | F           |        |             |        | F           | 0   |  |        |             |        |             | _        | _           | _      |                    | 0   |  |
|                      | F      |             |        |             |        |             |        |             | -1  | - |          | F           |        |             |        | F           |        |             | -1  |  |        |             |        |             | _        | _           | _      |                    | -1  |  |
| POGO's               |        | _           | -      |             |        |             |        |             | -2  | - |          |             | L      |             |        |             | L      |             | -2  |  |        |             |        |             |          | _           | _      | $\left  - \right $ | -2  |  |
| Probing window       | _      |             | -      | -           |        |             |        |             | -3  | - | L        |             | _      |             | L      |             | -      |             | -3  |  |        |             |        |             | ⊢        | _           | _      | $\vdash$           | -3  |  |
|                      | -      |             | -      | -           |        |             |        |             | -4  | - |          |             | F      |             | F      |             | F      |             | -4  |  |        |             |        |             | ⊢        |             | _      | $\vdash$           | -4  |  |
|                      | -      |             | -      | <u> </u>    |        |             |        |             | -5  | - | F        |             |        |             |        |             |        |             | -5  |  |        |             |        |             | –        | ─           | _      | $\left  - \right $ | -5  |  |
|                      | _      |             | -      |             |        |             |        |             | -6  | - | <u> </u> |             |        |             |        |             |        |             | -6  |  |        |             |        |             |          | ─           | ├──    | $\left  - \right $ | -6  |  |
|                      | -      |             | -      | -           |        |             |        |             | -/  | - | <u> </u> |             |        |             |        |             |        |             | -/  |  |        |             |        |             | $\vdash$ | —           | –      | $\left  - \right $ | -/  |  |
|                      | -      | +           | -      | -           |        |             |        |             | -8  | - | <u> </u> |             |        |             |        |             |        |             | -ŏ  |  |        |             |        |             | $\vdash$ | ├─          | ├──    | $\left  - \right $ | -8  |  |
|                      | -      |             | -      | -           |        |             |        |             | -9  | - |          |             |        |             |        |             |        |             | -9  |  |        |             |        |             | $\vdash$ | ─           | ─      | $\left  - \right $ | -9  |  |
|                      |        |             |        |             |        |             |        |             | -10 |   |          |             |        |             |        |             |        |             | -10 |  |        |             |        |             |          |             |        |                    | -10 |  |











Site 1 at maximum OD

(11mils)

(11mils)

Site 1 at maximum OD (11mils)

Total overdrive of about 11 mils to achieve continuity

Successful but window was limited and production team wanted improvements





#### **Test Solutions – Production Build**



- Spring damper to better support leadframes
- Absorber damper to add compliance/reduce bowing of top plate



Production Wafer Probe of 77-81 GHz Automotive Radar Applications



#### **Field Results – Improved Production**

|                        | Ambient    |      |          |      |          |        |          |       |          |         | Hot        |      |          |      |          |        |          |      |          |  | Cold       |      |          |      |          |      |          |      |          |
|------------------------|------------|------|----------|------|----------|--------|----------|-------|----------|---------|------------|------|----------|------|----------|--------|----------|------|----------|--|------------|------|----------|------|----------|------|----------|------|----------|
|                        |            | 1    | 1        | 2    | 2        | 3      | 3        | 4     | 4        |         |            | 1    | 1        | 2    | 2        | 3      | 3        | 4    | 4        |  |            | 1    | 1        | 2    | 2        | 3    | 3        | 4    | 4        |
|                        | Over Drive | POGO | LEADFARM | POGO | LEADFARM | Pogo   | LEADFARM | POGO  | LEADFARM |         | Over Drive | POGO | LEADFARM | Pogo | LEADFARM | POGO   | LEADFARM | POGO | LEADFARM |  | Over Drive | POGO | LEADFARM | POGO | LEADFARM | Pogo | LEADFARM | Pogo | LEADFARM |
|                        | 11         |      |          |      |          |        |          |       |          |         | 11         |      |          |      |          |        |          |      |          |  | 11         |      |          |      |          |      |          |      |          |
|                        | 10         |      |          |      |          |        |          |       |          |         | 10         |      |          |      |          |        |          |      |          |  | 10         |      |          |      |          |      |          |      |          |
|                        | 9          |      |          |      |          |        |          |       |          |         | 9          |      |          |      |          |        |          |      |          |  | 9          |      |          |      |          |      |          |      |          |
| Lond from the surplice | 0          |      | _        |      |          |        |          |       |          |         | 0          |      |          |      |          |        |          |      |          |  | 0          |      |          |      |          |      |          |      |          |
| Lead frame's probing   | 6          |      |          |      |          |        |          |       |          |         | 6          |      |          |      |          |        |          |      |          |  | 6          |      | _        |      |          |      |          |      |          |
|                        | 5          | -    |          |      |          |        |          |       |          |         | 5          |      |          |      |          |        |          |      |          |  | 5          |      |          |      |          |      |          |      |          |
|                        | 4          |      |          |      |          |        |          |       |          |         | 4          |      |          |      |          |        |          |      |          |  | 4          |      |          |      |          |      |          |      |          |
|                        | 3          |      |          |      |          |        |          |       |          |         | 3          |      |          |      |          |        |          |      |          |  | 3          |      |          |      |          |      |          |      |          |
| POGO's                 | 2          |      |          |      |          |        |          |       |          |         | 2          |      |          |      |          |        |          |      |          |  | 2          |      |          |      |          |      |          |      |          |
| Probing window         | 1          |      |          |      |          |        |          |       |          |         | 1          |      |          |      |          |        |          |      |          |  | 1          |      |          |      |          |      |          |      |          |
|                        | 0          |      |          |      |          |        |          |       |          |         | 0          |      |          |      |          |        |          |      |          |  | 0          |      |          |      |          |      |          |      |          |
|                        | -1         |      |          |      |          |        |          |       |          |         | -1         |      |          |      |          |        |          |      |          |  | -1         |      |          |      |          |      |          |      |          |
|                        | -2         |      |          |      |          |        |          |       |          |         | -2         |      |          |      |          |        |          |      |          |  | -2         |      |          |      |          |      |          |      |          |
|                        | -3         |      |          |      |          |        |          |       |          |         | -3         |      |          |      |          |        |          |      |          |  | -3         |      |          |      |          |      |          |      |          |
|                        | -4         |      |          |      |          |        |          |       |          |         | -4         |      |          |      |          |        |          |      |          |  | -4         |      |          |      |          |      |          |      |          |
|                        |            | Lea  | d fram   | nesa | nd po    | igos a | all wo   | rking | at sin   | nilar v | vindo      | wsad | cross    | temp | eratu    | ire ra | nge -    | Dec  |          |  |            |      |          |      |          |      |          |      |          |

- Full continuity at all temps at 8 mils of overdrive
- Max overdrive of 13 mils allowed
- 5 mil working window
- Production team approved for release





### Field Results – Ongoing Concerns

- Over 250,000 insertions on the first probe head
- In-Situ cleaning as angled leadframes are more difficult to clean than pogo pins or flat leadframes – reviewing new cleaning media
- Absorber system may degrade over time and require repair/improvement







# **Strengths**

- Excellent RF performance over a broad range of frequencies
- Long life
- Individual probe / lead frame replacement
- Multi-site capability (material CTE Match)
- Large compliance window





#### Weakness

- Complex to balance multiple contact technologies on one DUT
- Some limits on the number and location of RF signals
- In-situ cleaning is difficult
- May need maintenance on absorption system over time







# **Next Steps**

- Project has moved to production and additional test cells are being deployed to meet end user demand! (13 probe heads shipped to date)
- Testing in-situ cleaning media and methods under investigation
- Testing life performance of absorption system (resolved)
- Better control of force on leadframes with modifications to support system (future projects)
- Have improved tolerance capabilities and geometries on leadframes
- Have implemented better PCB pad compatible geometries





#### Summary/Conclusion

- Advances in IC design architectures and contacting methods make high volume test of automotive radar RF devices production capable with test resources already available on production floors.
- Demonstrated Production worthy quad-site tri-temp Probecard solution for 77GHz automotive radar wafter test applications with BIST
- Thank you to NXP for the opportunity and collaboration to make it happen!



