DiamondX HDVI
High-Density Voltage Current Instrument for Massive Multisite Test

The HDVI offers significant cost-of-test and cost of-ownership savings for very price sensitive devices used in consumer products such as digital cameras and mobile electronics. It offers the highest V/I pin density in the industry and reduces the total number of instruments and test systems needed for high volume production.

The High Density Voltage Current (HDVI) instrument has 72 channels of 4-quadrant voltage/current source and measurement capability.

Highlights
- Voltage/current supply (VIS) mode
- Precision analog source (PAS) mode
- Flexible triggering options
- External input matrix

Features
- Industry-leading V/I channel density enables massive multisite configurations for the best throughput
- Built-in, high-bandwidth input matrix allows external instruments to connect to dual-use DUT pins which reduces relays on the load board, simplifies design and improves load board reliability
- High-precision, per-pin analog source enables parallel testing of embedded ADC's, analog pins on microcontrollers and a wide range of consumer devices
- 4-quadrant, high-current performance provides coverage for the growing embedded power management market
- High-accuracy voltage measurement capability ensures reliable testing of sensitive voltage references

- 72 Channels
- Force/Measure 4-Quadrant Operation
- ±7 V / 256 mA, gang to 2 A
- 2 Precision Analog Sources
DiamondX HDVI
High-Density Voltage Current Instrument for Massive Multisite Test

Voltage/Current Supply (VIS) Mode
In the VIS mode, the HDVI instrument provides a scalable, four-quadrant power supply gangable by 2, 4 or 8 channels up to a maximum of 2 A, each with multiple force and measure ranges to test a wider range of consumer, wireless and automotive devices. The force side on each channel is driven by a 16-bit DAC and a 4k source memory. On the receive side, each channel has a 1 k measure memory.

Flexible Triggering Options
The HDVI is clocked internally by the on-board Clock and Trigger Unit. It can be triggered internally or externally through the Diamond Series event trigger infrastructure for maximum flexibility. Trigger event lines on the system bus are available for signaling and synchronizing with other instruments. A full suite of APIs allow the user-defined program to loop, increment and decrement the 4k VIS and 128 k PAS source memories, as well as trigger measurements.

Precision Analog Source (PAS) Mode
In the PAS mode the HDVI provides two precision analog sources. Source 0 connects to all even channels and Source 1 all odd channels on the instrument with individual gain and offset control per channel. These sources give the test engineer a high degree of accuracy for forcing voltage. The PAS has a 16-bit DAC and a 128 k waveform memory to drive high-accuracy analog waveforms into micro controllers and other consumer devices with embedded ADCs. An array of pre-defined signals like sine, ramp and triangle waveforms makes programming the PAS easy.

External Input Matrix
The HDVI has an external input on each channel that allows the test engineer to connect other instruments to general-purpose I/O device pins. The input matrix reduces load board circuitry needed to switch between tester resources and multi-function device pins. As a direct consequence of reduced load board components, the resulting space savings can be used to increase multisite count which significantly lowers the unit cost of test.

The industry-leading V/I channel density of the HDVI instrument on the Diamond Series enables massive multisite configurations for the best throughput and lowest cost of test.

- 72 Channels
- Force/Measure 4-Quadrant Operation
- ±7 V / 256 mA, gang to 2 A
- 2 Precision Analog Sources
Diamond\textsubscript{X} HDVI

High-Density Voltage Current Instrument for Massive Multisite Test

Specifications

General
- Channel Count: 72
- Voltage/Current Source & Measure: 4-Quadrant

Voltage/Current Supply (VIS)
- DC Voltage Force/Measure Ranges: ±1.8 V, 3.6 V, 7 V
- DC Voltage Force Accuracy: ±0.05% FSR*
- DC Voltage Measure Accuracy: ±0.025% FSR*
- DC Current Force Ranges: ±8 mA, 128 mA, 256 mA
- DC Current Force Accuracy:
 - ±8 mA, 128 mA: ± (0.125% FSR + 0.25% force value)*
 - ±256 mA: ± (0.25% FSR + 0.5% force value)*
- DC Current Measure Ranges:
 - ±15 µA, 125 µA, 1 mA, 8 mA, 128 mA, 256 mA
- DC Current Measure Accuracy:
 - ±15 µA, 125 µA, 1 mA, 8 mA, 128 mA: ±(0.125% FSR + 0.25% measure value)*
 - ±256 mA: ±(0.25% FSR + 0.5% measure value)*
- Ganged Channels: 2, 4, 8
- Maximum Current:
 - ±2 A (8 x 256 mA/channel) or ±200 mA/channel (all channels ON)
- Source Memory: 4 kS/Channel
- Measure Memory: 1 kS/Channel

Precision Analog Source (PAS)
- Independent PAS Sources:
 - PAS0 (channels 0, 2, 4, ...70)
 - PAS1 (channels 1, 3, 5, ...71)
- Individual Channel Gain & Offset:
 - Output voltage range: +3 V, +6 V
 - Output voltage accuracy: ±300 µV, ±400 µV
 - Source Waveform Memory: 128 kS
 - Maximum Sample Rate: 100 kHz

External Input Matrix
- Impedance: 50 ohms
- Bandwidth: 0 to 500 MHz

*Full Scale Range (FSR) is defined as –FS to +FS. So ±0.05% FSR of ±7 V range is (±0.05 * 14 V) = ±7 mV

All specifications are subject to change without notification and are for reference only. For detailed performance specifications, please contact Cohu.