

Wai-Kong Chen
Semiconductor Test Group

Agenda

- DDIC market trend
- Types of pre-emphasis
 - Analog and Digital
- □ Digital pre-emphasis in a nutshell
 - Definition of pre-emphasis
- □ Pre-emphasis setting in Cohu high-speed digital instrument
 - Waveform collection method
 - How pre-emphasis influence waveshape
- □ Pre-emphasis use model concept

Current Display Driver IC Market Trend

2021

mipi D-PHY 2003

LVDS 199x

№ Cohu

What is Pre-emphasis?

Types of pre-emphasis

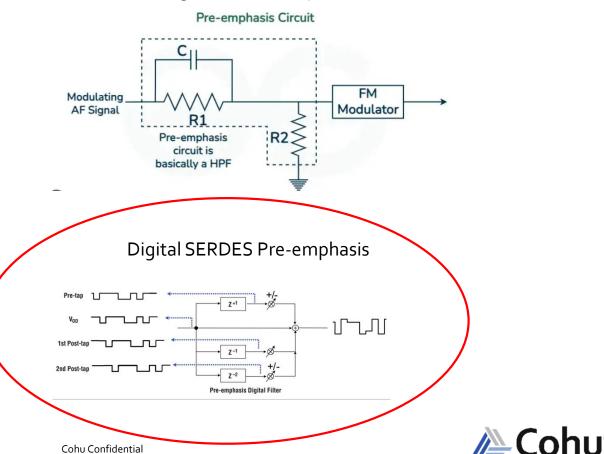
Analog (Audio)

Digital (SERDES)

Reason for pre-emphasis

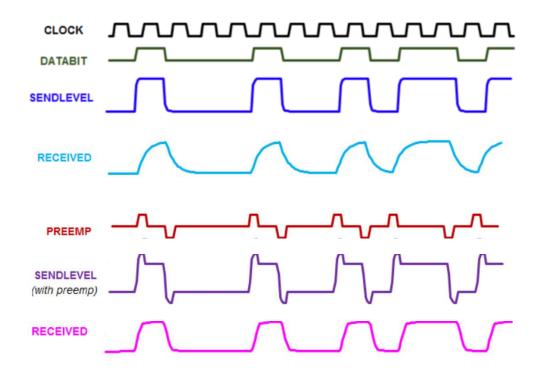
Signal degradation happens because of long transmission line and jitter

Analog signal (Audio)


In general, signals with higher modulation frequencies have lower SNR, pre-emphasis helps amplify high frequency signal components such that they will have magnitude higher than noise components. This led to improvement in the Signals to Noise Ratio

Digital signal (SERDES)

Pre-emphasis boots the high-frequency energy on every transition in the data stream by combining different delays, weights, and polarity to optimize channel loss through finite impulse response (FIR) filter.

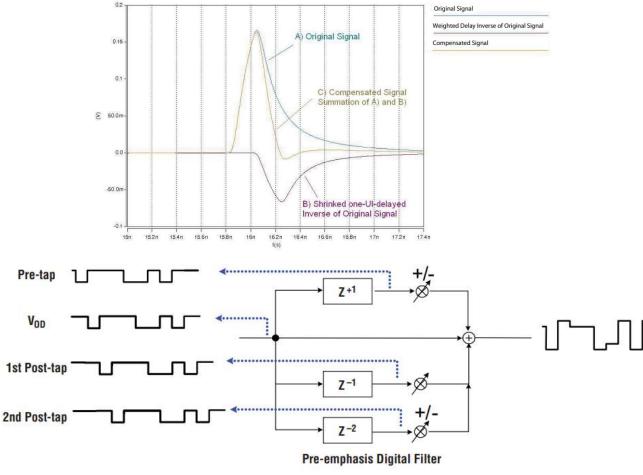

Pre-emphasis circuits

Analog Audio Pre-emphasis

March 13, 2025 Page 4

Digital signal pre-emphasis in a nutshell

Definition of Pre-emphasis for digital signal (SERDES)

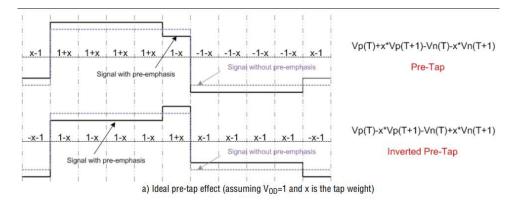

High-speed digital signal

 As high-speed digital signal traveling through a PCB, skin effect and dielectric losses will degrade and attenuate the high-frequency content of the signal

Pre-emphasis

 The objective of pre-emphasis is to apply delay and inversion to the original signal and sum it back with proper weight to compensate the inter-symbolinterference (ISI) from the nearby data symbol

Pre-emphasis Digital Filter

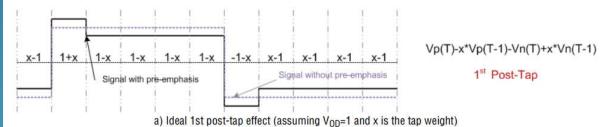


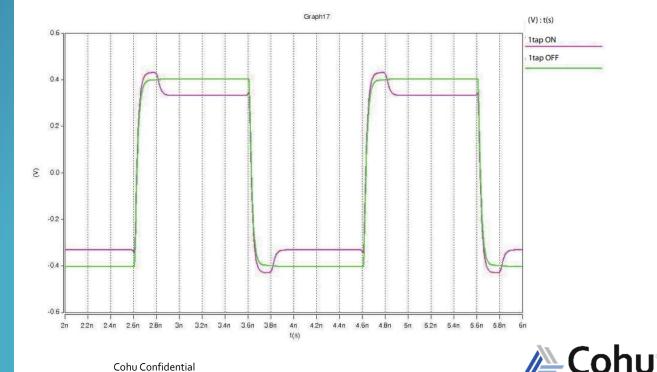
Pre-emphasis

Pre-1

- □ 32 voltage steps total (value range from -1 to +1)
- Each voltage step represent a 10mV common mode differential or 5mV common mode single ended
- □ Pulse active for 1 native clock resolution before
 - For instance. 1.25Gbps, UI = 800ps
 - Native rate is 8 x 1.25Gbps = 10Gbps (100ps)
 - Pre-emphasis is valid for one native rate period

Pre-1

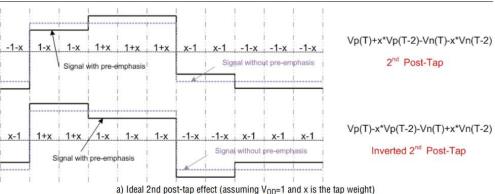



Pre-emphasis

Post-1

- □ 32 voltage steps total (value range from -1 to o)
- Each voltage step represent a 10mV common mode differential or 5mV common mode single ended
- □ Pulse active for 1 native clock resolution after
 - For instance. 1.25Gbps, UI = 800ps
 - Native rate is 8 x 1.25Gbps =
 10Gbps (100ps)
 - Pre-emphasis is valid for one native rate period

Post-1



Pre-emphasis

Post-2


- □ 32 voltage steps total (value range from -1 to +1)
- Each voltage step represent a 10mV common mode differential or 5mV common mode single ended
- □ Pulse active for 2 native clock resolution after
 - For instance. 1.25Gbps, UI = 800ps
 - Native rate is 8 x 1.25Gbps = 10Gbps (100ps)
 - Pre-emphasis is valid for one native rate period

Post-2

a) rocal 2nd post-tap effect (assuming v_{OD}=1 and x is the tap weight)

Effect of 2nd postap with and without inversion

Pre-emphasis setting

	Baseline	Excessive pre cursor	Optimized	Excessive post cursor
	Baseline signal with no emphasis. Transition bits are clearly weaker than non-transition bits and the signal is touching the mask (fail).	Excessive pre-cursor emphasis. The eye is more closed than the baseline, indicating minimal pre-cursor ISI was present and the emphasis is doing more harm than good.	Well-tuned post-cursor emphasis. The eye is open and transition and non-transition bits are well matched in amplitude, indicating a correct level of equalization. The signal is passing the mask test.	Excessive post-cursor emphasis. The eye is starting to close and transition bits have significant overshoot, indicating excessive equalization. The "double banding" artifact visible in the eye indicates the presence of significant ISI ^{[5]:2} caused by the excessive emphasis.
Width	Worst	Better	Best	Better
Height	Good	Bad	Best	Bad
Jitter	Worst	Better	Best	Better

Direct Connection

Equipment used

- HSI2x high-speed digital instrument
- 2. Semi-rigid coax cable with bandwidth of 30GHz
- 3. High bandwidth oscilloscope

Connection

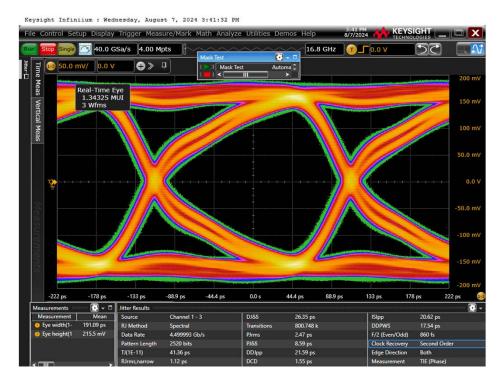
- Direct connection into instrument connector
- 2. Connector has a 25GHz bandwidth

Eye Diagram collection method

HBR2 CP2520 at 8Gbps

□ Direct connection with no pre-emphasis

■ Direct Connection with pre-emphasis

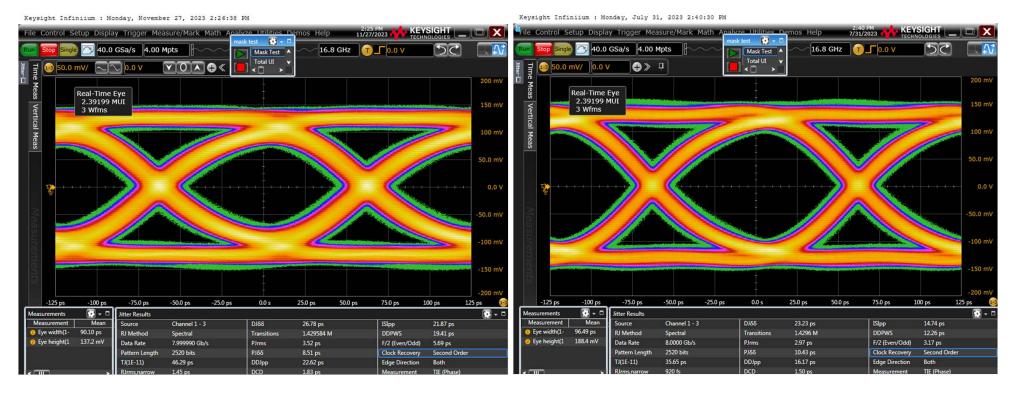


HBR2 CP2520 at 4Gbps

□ Direct connection with no pre-emphasis

□ Direct Connection with pre-emphasis

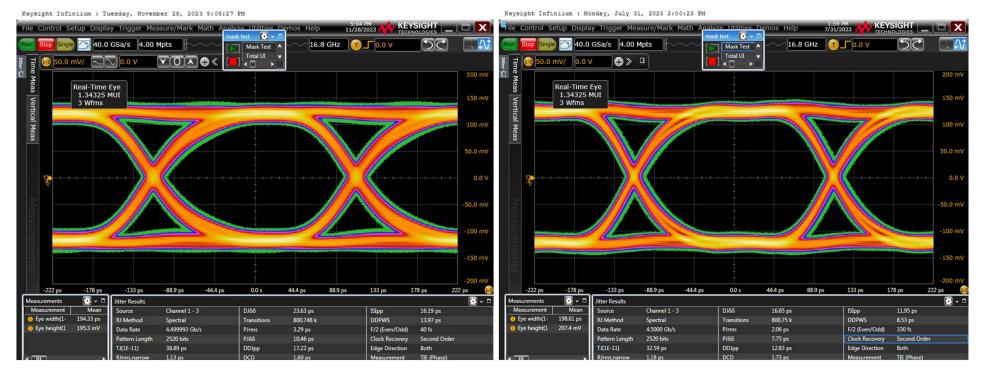
Keysight Infiniium : Monday, July 31, 2023 2:00:23 PM



HBR2 CP2520 at 8Gbps with optimized pre-emphasis

■ Eye Diagram on load board

□ Eye Diagram on instrument connector



HBR2 CP2520 at 4Gbps with optimized pre-emphasis

□ Eye Diagram on Load Board

Eye Diagram on Instrument Connector

How pre-emphasis influence waveshape (Pre-1=Max)

March 13, 2025 Page 16

How pre-emphasis influence waveshape (Pre-1=Mid)

March 13, 2025 Page 17

How pre-emphasis influence waveshape (Pre-1=Min)

March 13, 2025 Page 18

How pre-emphasis influence waveshape (Post-1=Max)

March 13, 2025 Page 19

How pre-emphasis influence waveshape (Post-1=Mid)

March 13, 2025 Page 20

How pre-emphasis influence waveshape (Post-1=Min)

March 13, 2025 Page 21

How pre-emphasis influence waveshape (Post-2=Max)

March 13, 2025 Page 22

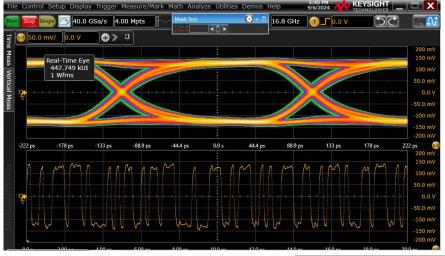
How pre-emphasis influence waveshape (Post-2=Mid)

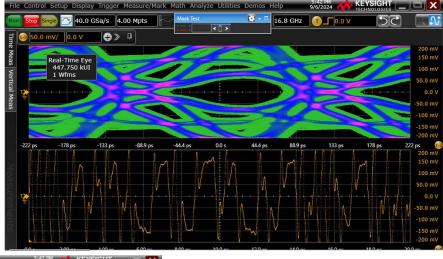
March 13, 2025 Page 23


How pre-emphasis influence waveshape (Post-2=Min)

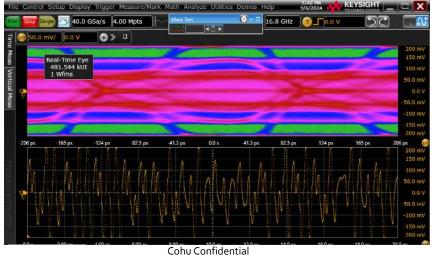
March 13, 2025 Page 24

Too many settings


March 13, 2025 Page 25

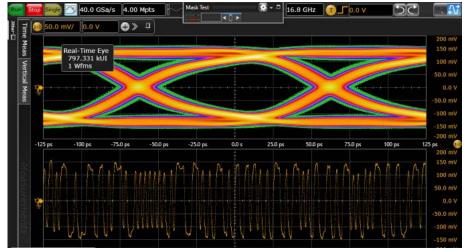

Pre-emphasis setting challenges

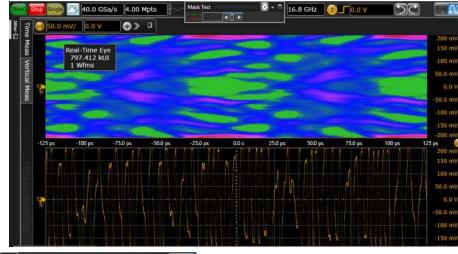
- There are 3 knobs for pre-emphasis setting
 - Pre-1
 - Post-1
 - Post-2
- Each knobs has 32 settings
 - A combination of 32K settings with 3 knobs
 - To determine the optimum setting will be time consuming and challenging without oscilloscope
- □ Pre-emphasis use model concept
 - Automate the pre-emphasis setting through engineering characterization
 - API with selection of mid, minimum and maximum pre-emphasis setting

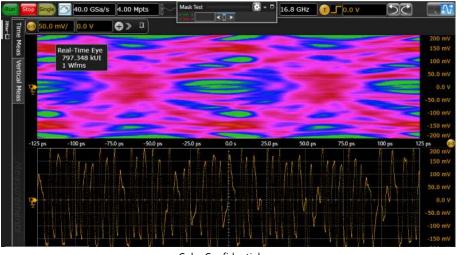


4Gbps PRBS7 Pre-emphasis setting (Mid, Max, Min)

Mid


Min


Max


March 13, 2025 Page 26

8Gbps PRBS7 Pre-emphasis setting(Mid, Max, Min)

Mid

Min

Max

SHUKRIYA Go raibh maith agaibh Cảm ơn ANKE Hsieh hsieh

NA GODE E Blagodarya

DANKEJE

Gamsahabnida younge Khob-kun Khob-kun

-ALEMINDERI **GRACIAS**

Tusen takk

Köszönöm

MAHALO HVALA TERIMA KASIH

GRAZIE DZIEKUJE

Doumo Arigatou

